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Abstract

In this analysis, the boundary layer viscous flow of radiactive MHD nanofluids flow

and heat transfer over a non-linearly-stretching sheet through porous medium is

presented. Velocity and thermal slip conditions are considered instead of no slip

conditions at the boundary. A similarity transformation set is used to transform

the governing partial differential equations into non-linear ODEs. The reduced

equations are solved numerically using the Shooting method. The influence of

the governing parameters on the dimensionless velocity, temperature, nanoparti-

cle concentration as well as the skin friction coefficient, Nusselt number and local

Sherwod number are analyzed. It is found that as the velocity slip parameter

increases, the velocity profile is decreased and the skin friction and heat transfer

decreased while the mass transfer is increased. Increasing the thermal slip param-

eter causes decrease in the heat and mass transfer rates. The results are presented

in both graphical and tabular forms.
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Chapter 1

Introduction

In many engineering processes, viscous fluid flow is an important factor includ-

ing crystal growing, electronic chips or cooling of metallic sheets, paper and glass

fiber production etc. [1]. Hence, the cooling process results in the end product of

desired characteristics [1]. Sakiadis [2] introduced axi-symmetric analysis and 2D

boundary layer fluid flow while Kumaran and Ramanaiah [3] analysed flow over

a quadratic stretched surface. Sajid et al. [4] examined the viscous flow due to

curved stretching surface. The Shooting method with RK4 was used to obtain the

similarity solution of the problem. The physical quantities of interest such as Skin

friction coefficient and fluid velocity are obtained and discussed under the influ-

encce of nondimensional curvature. It is observed that boundary layer thickness

increased due to nondimensional curvature while skin friction coefficient decreased.

Sanni et al. [5] observed the said problem with non-linear power law velocity over

the curved stretching sheet. Sandeep et al. [6] analysed the complication related

to stagnation point, mass and heat flow behaviour in the presence of magnetic

field over a stretching surface. The slip flow of the magnetic properties-convective

boundary layer through a non-isothermal, continuously moving non-linear radiat-

ing plate immersed in Darcian porous materials using the numerical fourth-fifth

order Runge-Kutta Fehlberg was worked by Uddin et al. [7]. The fluid containing

nanoparticles is called Nanofluid. These fluids are concoted colloidal solution in a

base fluid. Their composition utilize metals like copper or silver, carbides (SiC),

1
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oxides (CuO, Al2O3), Nitrides (AIN) or non metals (Carbon nano tubes). The

base fluid can be water or toluene. The combination of base fluid particle is chosen

according to the desired application of nanofluid. Nanofluids have many engineer-

ing and biomedical utilizations. Stability, sufficient viscosity, better wetting and

dispersion are the benefits of nanofluids. The range of nanoparticles is 1−100 nm

in diameter. Experimentations have shown that only five percent nanoparticle

volume fraction is required for effective heat transfer [8].

Fakour et al. [9] examined transfer of heat and flow of nanofluid in a permeable

channel with magnetic field. Hamad et al. [10] reported similar solutions in terms

of energy transfer and viscous fluid over non-linearity sheet stretching using RK4

technique. Das [11] analysed the boundary layer flow with the partial slip over

a non-linear stretched surface at specific temperature. Kumar et al. [12] stud-

ied the problem related to flow of electrically charged fluid and transfer of heat

under the action of magnetic field and heat source over a stretching surface. Ud-

din et al. [13] presented the 2D magnetohydrodynamic boundary layer flow of a

charged Newtonian nanofluid over a stretching surface in a quiescent fluid. Uddin

et al. [14] presented the impact of heat and mass transfer, based on 2D laminar

mixed convective boundary layer nanofluid flow. Water based transfer of heat of

steady viscous fluid in existence of charged particles over a stretched surface is

examined by Rashidi et al. [15]. The unsteady MHD squeezing flow through two

parallel (boundary layer flow) discs is investigated by Azimi and Riaz [16]. In this

research similarity transformation was used to transform the PDEs into ODEs,

and finally ODEs were solved using Shooting method with RK4 scheme.

Boundary slip results are widely applicable for cleaning synthetic heart valves.

By using homotopy analysis technique, Mustafa et al. [17] investigated the slip

impact of nanofluid in a network with wall slip, on flowing movements. In recent

times, Malvandi et al. [18] simulated the joint impact of viscous flow and thermal

slip on turbulent boundary layer flow from a nanofluid over a stretching surface.

Khan et al. [19] analyzed the role of boundary layer and slip velocity of Copper-

water and Copper-kerosene nanofluid on 2D and axi-symmetric stretching flow.

The study of MHD flow and heat transfer over a stretched surface was given by
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Turkyilmazoglu [20], taken into account second order slip. Turkyilmazoglu [21] an-

alyzed the magnetohydrodynamics slip flow of an ionized, non-Newtonian liquids

over a stretched surface. Turkyilmazoglu [22] investigated the relationship be-

tween specific nanofluids and ordinary flow properties by incorporating a scaling

method that significantly simplifies the assessment of flow and process conditions

including skin friction and temperature profile. Turkyilmazoglu [23] examined the

thermal energy liquid film principle of conventional Nusselt in case where mate-

rial from some widely applied nanoparticles are introduced to the liquid phase.

The mixture solution that is nanofluid, is numerically examined either when the

nanoparticles are randomly scattered throughout the condensate control volume

that would be the most common template in the research, or when the particle

concentration through the film can differ from the outer wall of the condensate

film throughout the case of the modified nanoparticles of Buongiorno. Rashidi

et al. [24] investigated the free convective heat and mass transfer in a linear 2D

magnetohydrodynamics stretching vertical surface in a pervious material, by using

the homotopy analysis approach.

Thermal radiation is the phenomena of release of energy from a heated surface

in the form of electromagnetic radiations. Hayat and Qasim [25] worked on the

MHD flow with heat transmission over a stretched surface utilizing Joule heating

and thermodiffusion and concluded that Rd and θ are in inverse relationship to

each other. Sheikholeslami et al. [26] demonstrated the influence of Rd on mag-

netohydrodynamics flow between two horizontal rotating plates and obtained a

conclusion that the Nusselt number have direct impact on radiation parameter

and inverse impact on other active parameters while the thickness of concentra-

tion boundary layer and radiation parameter are in inverse relationship to each

other.

A porous medium is any solid containing sufficient open spaces in between for

fluid flow. Porous media has numerous applications in many areas of applied sci-

ence including mechanics, engineering, biophysics and material science etc. [27].

Saffman [28] worked on the dispersion of dynamically neutral material quantity

in a fluid flow through porous medium. Jugjai et al. [29] analyzed that porous

medium burner is more advantegous than ordinary open burner due to low emission
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of pollutants and enhanced evaporation of droplet spray. Khanafer and Vafai [30]

demonstrated that combination of nanofluids and porous medium has wide range

of potential to increase heat transfer in thermal systems.

A thorough search on the impact of thermal radiation and porosity factor on

MHD nanofluid flow over a non-linear stretching sheet in the existence of a mag-

netic field, yeilded only a few information. This thesis prolongate the study of of

Ramya et al. [8]. The flow over peripheral layer and transfer of heat of a nanofluid

that shows wall slip effects are taken into the account and the PDEs are changed

into ODEs and solved numerically using Shooting method with RK4.

1.1 Thesis Contribution

The main purpose of this thesis is to demonstrate the impact of thermal radiation

and porosity factor on MHD nanofluid flow over a non-linear stretched surface.

The governing PDEs are transformed into set of non-linear ODEs using suitable

similarity transformations. Moreover, Shooting method is employed to obtain

numerical results of obtained ODEs. The numerically obtained results are com-

puted by using MATLAB. The impact of various physical parameters have been

discussed in table and graphs.

1.2 Contents of Thesis

This thesis is classified into following four chapters:

Chapter 2 consists on basic definitions, terminologies and governing PDEs which

are useful for upcoming chapters.

Chapter 3 based on review work of Ramya et al. [8]. The set of governing

non-linear PDEs is converted into non-linear ODEs by using set of adequate sim-

ilarity transformations and then solved by Shooting technique with RK4. The

results obtained by ODEs are discussed through table and graphs.
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Chapter 4 extends the work of Ramya et al. [8] through porous medium. The

non-linear ODEs are solved using Shooting technique with RK4. Numerical out-

comes for different physical parameters are discussed through table and graphs.

Chapter 5 presents the conclusion of thesis.



Chapter 2

Basic Definitions and Governing

Equations

A few basic definitions, terminologies and governing laws will be presented in this

unit, which will be useful in continuing the work for the next units.

2.1 Basic Definitions

Definition 2.1. (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” [31].

Definition 2.2. (Fluid Mechanics)

“Fluid mechanics is that branch of science which deals with the behaviour of the

fluid (liquids or gasses) at rest as well as in motion” [32].

Definition 2.3. (Fluid Statics)

“The study of fluid at rest is called fluid statics” [32].

Definition 2.4. (Fluid Dynamics)

“The study of fluid if the pressure forces are also considered for the fluid in motion,

that branch of science is called fluid dynamics” [32].

6



Basic Definitions 7

Definition 2.5. (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
du
dy

,

where µ is the viscosity coefficient τ is the shear stress and du
dy

represents the

velocity gradient” [32].

Definition 2.6. (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol ν called nu. Mathematically,

ν =
µ

ρ
,

where ν is the kinematic viscosity and ρ denote density respectively” [32].

2.2 Types of Fluid

“The fluid may be classified into following five types.

• Ideal fluid

• Real fluid

• Newtonian fluid

• Non-Newtonian fluid, and

• Ideal plastic fluid” [32].

Definition 2.7. (Ideal Fluid)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some

viscosity” [32].
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Definition 2.8. (Real Fluid)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids” [32].

Definition 2.9. (Newtonian Fluid)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid” [32].

Definition 2.10. (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid” [32].

Definition 2.11. (Ideal Plastic Fluid)

“A fluid, in which shear stress is more than the yield value and shear stress is

proportional to the rate of shear strain(or velocity gradient), is known as ideal

plastic fluid” [32].

2.3 Heat Transfer Mechanism and related Prop-

erties

Definition 2.12. (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference” [33].

Definition 2.13. (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion” [33].

Definition 2.14. (Convection)

“Convection heat transfer is usually defined as energy transport effected by the

motion of a fluid. The convection heat transfer between two dissimilar media is

governed by Newtons law of cooling” [33].
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Definition 2.15. (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely to the temperature of the medium. Radiant energy ex-

change between surfaces or between a region and its surroundings is described by

the Stefan-Boltzmann law, which states that the radiant energy transmitted is pro-

portional to the difference of the fourth power of the temperatures of the surfaces.

The proportionality parameter is known as the Stefan-Boltzmann constant” [33].

Definition 2.16. (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parame-

ter known as the thermal conductivity which may be a function of a number of

variables.” [33].

2.4 Types of Fluid Flow

“ The fluid flow is classified as:

1. Steady and unsteady flows;

2. Uniform and non-uniform flows;

3. Laminar and turbulent flows;

4. Compressible and incompressible flows;

5. Rotational and irrotational flows

6. One, two and three-dimensional flows” [32].

Definition 2.17. (Steady Flow)

“Steady flow is defined as that type of flow in which the fluid characteristics like

velocity, pressure, density, etc., at a point do not change with time. Thus for

steady flow, mathematically, we have:

(
∂V

∂t

)
x0 y0 z0

=

(
∂p

∂t

)
x0 y0 z0

=

(
∂ρ

∂t

)
x0 y0 z0

= 0” [32].
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Definition 2.18. (Unsteady Flow)

“Unsteady flow is defined as that type of flow in which the fluid characteristics

like velocity, pressure, density, etc., at a point changes with respect to time. Thus

for unsteady flow, mathematically, we have:

(
∂V

∂t

)
x0 y0 z0

=

(
∂p

∂t

)
x0 y0 z0

6= 0” [32].

Definition 2.19. (Uniform Flow)

“Uniform flow is defined as that type of flow in which velocity at any given time

does not change with respect to space (i.e., length of direction of the flow). Math-

ematically, for uniform flow

(
∂V

∂s

)
t=constant

= 0,

where ∂V = change of velocity and ∂ s =length of flow in the direction S” [32].

Definition 2.20. (Non-uniform Flow)

“Non-uniform flow is that type of flow in which velocity at any given time changes

with respect to space. Thus, mathematically, for non-uniform flow

(
∂V

∂s

)
t=constant

6= 0,

where V is the velocity and s is the displacement” [32].

Definition 2.21. (Laminar Flow)

“Laminar flow is defined as that type of flow in which fluid particles move along

well-defined paths or stream line and all the stream-lines are straight and parallel.

Thus the particles move in laminas or layers gliding smoothly over the adjacent

layer. This type of flow is also called stream-line floew or viscous flow” [32].

Definition 2.22. (Turbulent Flow)

“Turbulent flow is that type of flow in which the fluid particles move in a zig-zag

way. Due to movement of fluid particles in zig-zag way the eddies formation takes

place which are responsible for high energy loss.” [32].
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Definition 2.23. (Compressible Flow)

“Compressible flow is that type of flow in which the density of fluid changes from

point to point or in other words the density (ρ) is not constant for the fluid. Thus,

mathematically, for compressible flow

ρ(x, y, z, t) 6= c,

where ‘c’ is a constant” [32].

Definition 2.24. (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the

fluid flow. Liquids are generally incompressible while gasses are compressible.

Mathematically for compressible flow:

ρ(x, y, z, t) = c,

where ‘c’ is constant” [32].

Definition 2.25. (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis” [32].

Definition 2.26. (Irrotational Flow)

“An Irrotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, do not rotate about their own axis” [32].

Definition 2.27. (One-dimensional Flow)

“One dimensional flow is that type of flow in which the flow parameter such as

velocity is a function of time and one space co-ordinate only. The variation of

velocities in other two mutually perpendicular directions is assumed negligible.

Hence, mathematically, for one dimension flow

u = f(x), v = 0 and w = 0,

where u, v and w are velocities components in x, y and z directions respec-

tively” [32].
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Definition 2.28. (Two-dimensional Flow)

“Two-dimensional flow is that type of flow in which velocity is a function of time

and two rectangular space co-ordinate say x and y. For a steady two-dimensional

the velocity is a function of two space co-ordinate only. The variation of the veloc-

ity in the third direction is negligible. Thus mathematically for two-dimensional

flow

u = f1(x, y), v = f2(x, y) and w = 0” [32].

Definition 2.29. (Three-dimensional Flow)

“Two-dimensional flow is that type of flow in which velocity is a function of time

and three mutually perpendicular directions. But for a steady three-dimensional

flow the fluid parameters are function of three space co-ordinates(x, y and z) only.

Thus mathematically for three-dimensional flow

u = f1(x, y, z), v = f2(x, y, z) and w = f3(x, y, z)” [32].

2.5 Fundamental Equation of Flow

2.5.1 Continuity Equation

“The principle of conservation of mass can be stated as the time rate of change of

mass in a fixed volume is equal to the net rate of flow of mass across the surface.

The mathematical statement of the principle results in the following equation,

known as the continuity (of mass) equation

∂ρ

∂t
+∇ · (ρV) = 0, (2.1)

where ρ is the density (kg/m3) of the medium, V the velocity vector (m/s), and

∇ is the nabla or del operator. The continuity equation in (2.1) is in conservation

(or divergence) form since it can be derived directly from an integral statement of



Basic Definitions 13

mass conservation. By introducing the material derivative or Eulerian derivative

operator D/Dt
D

Dt
=

∂

∂t
+ V · ∇, (2.2)

the continuity equation (2.1) can be expressed in the alternate, non-conservation

(or advective) form

∂ρ

∂t
+ V · ∇ρ+ ρ∇ ·V =

Dρ

Dt
+ ρ∇ ·V (2.3)

For steady-state conditions the continuity equation becomes

∇ · (ρV) = 0 (2.4)

When the density changes following a fluid particle are negligible, the continuum

is termed incompressible and we have Dρ
Dt

= 0. The continuity equation (2.3) then

becomes

∇ ·V = 0, (2.5)

which is often referred to as the incompressibility condition or incompressibility

constraint” [33].

2.5.2 Momentum Equation

“The principle of conservation of linear momentum (or Newton’s Second Law of

motion) states that the time rate of change of linear momentum of a given set

of particles is equal to the vector sum of all the external forces acting on the

particles of the set, provided Newton’s Third Law of action and reaction governs

the internal forces. Newton’s Second Law can be written as

∂

∂t
(ρV) +∇ · (ρV ⊗V) = ∇ · σ + ρf, (2.6)

where ⊗ is the tensor (or dyadic) product of two vectors, σ is the Cauchy stress

tensor (N/m2) and f is the body force vector, measured per unit mass and normally
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taken to be the gravity vector. Equation (2.6)describes the motion of a continuous

medium, and in fluid mechanics they are also known as the Navier equations. The

form of the momentum equation shown in (2.6) is the conservation (divergence)

form that is most often utilized for compressible flows. This equation may be

simplified to a form more commonly used with incompressible flows. Expanding

the first two derivatives and collecting terms

ρ

(
∂V

∂t
+ V∇ ·V

)
+ V

(
∂ρ

∂t
+∇ · ρV

)
= ∇ · σ + ρf (2.7)

The second term in parentheses is the continuity equation (2.1) and neglecting

this term allows (2.7) to reduce to the non-conservation (advective) form

ρ

(
DV

Dt

)
= ∇ · σ + ρf (2.8)

where the material derivative (2.2) has been employed.

The principle of conservation of angular momentum can be stated as the time rate

of change of the total moment of momentum of a given set of particles is equal to

the vector sum of the moments of the external forces acting on the system. In the

absence of distributed couples, the principle leads to the symmetry of the stress

tensor:

σ = (σ)T , (2.9)

where the superscript T denotes the transpose of the enclosed quantity” [33].

2.5.3 Law of Conservation of Energy

“The law of conservation of energy (or the First Law of Thermodynamics) states

that the time rate of change of the total energy is equal to the sum of the rate of

work done by applied forces and the change of heat content per unit time. In the

general case, the First Law of Thermodynamics can be expressed in conservation

form as

∂ρet

∂t
+∇ · ρvet = −∇ · q +∇ · (σ · v) +Q+ ρf · v, (2.10)
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where et = e + 1/2v · v is the total energy (J/m3), e is the internal energy, q is

the heat flux vector (W/m2) and Q is the internal heat generation (W/m3)” [33].

2.6 Dimensionless Parameters

Definition 2.30. Reynolds Number(Re)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. The expression for the Reynold’s number is defined as

Inertia force(Fi) = Mass× Acceleration of flowing fluid

= ρ× Volume× Velocity

Time
= ρ× Volume

Time
× Velocity

= ρ× AV × V (∵ Volume per sec = Area× Velocity = A× V )

= ρAV 2

viscous force(Fv) = Shear stress× Area

(
∵ τ = µ

du

dy
∴ Force = τ × Area

)
= τ × A

=

(
µ
du

dy

)
× A = µ · V

L
× A

(
∵
du

dy
=
V

L

)

By definition Reynold’s number,

Re =
Fi
Fv

=
ρAV 2

µ · V
L
× A

=
ρV L

µ

=
V × L
µ/ρ

=
V × L
ν

(
∵
µ

ρ
= ν = Kinematic Viscosity

)
” [32].

Definition 2.31. Prandtl Number(Pr)

“The Prandtl number is a dimensionless quantity that puts the viscosity of a fluid

in correlation with the thermal conductivity. It therefore assesses the relation

between momentum transport and thermal transport capacity of a fluid. It is

defined as
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Pr =
ν

α
,

Pr =
µCp
ρk

=
η

ρα
=
ηCp
λ

=
momentum transport

heat transport
(2.11)

where we have used the thermal diffusivity α which is defined as

α =
λ

ρCp

The Prandtl number is an example of a dimensionless number that is an intrinsic

property of a fluid. Fluids with small Prandtl numbers are free-flowing liquids

with high thermal conductivity and are therefore a good choice for heat conducting

liquids” [34].

Definition 2.32. Nusselt Number(Nu)

“Nusselt number is an important parameter that can contribute to a better rate

of heat exchange. It is basically a function of Reynolds and Prandtl number. The

correlation is provided as

Nu = C(Re)m(Pr)n = h ∗D/(k) (2.12)

This is the so-called Dittus Boelter-type correlation.

Where Nu = Nusselt number; Re = Reynolds number; Pr = Prandtl number; h =

heat transfer coefficient (W/m2k); and D = inner diameter of the tube (m)” [35].

Definition 2.33. Force Coefficient(Cf)

“Cf =
τw

1
2
%w2

=
F

1
2
%w2A

= 2Ne (2.13)

τw(Pa) − stress component of circumfluenced body; %(kgm−3) − fluid density;

w(ms−1) − flow velocity; F (N) − force;A(m2) − drag area; Ne (−) − Newton

number.

It is important mainly in aerodynamics and expresses the resistance-to-inertia

forces ratio. As a vector, the force F has a drag component FD and that of uplift

FL” [36].
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Definition 2.34. Eckert Number(Ec)

“The Eckert number relates the kinetic energy to the enthalpy of a fluid. It is

given by

Ec =
vref

2

CpTchar
=

η

Cpλ
=

kinetic energy

enthalpy
(2.14)

The Eckert number is used to characterize the influence of self-heating of a fluid

as a consequence of dissipation effects. At high flow velocities, the temperature

profile in a fluidic system is not just dominated by the temperature gradients

that are present in the system, but also be effects of dissipation due to internal

friction of the fluid. This will result in self-heating and thus in a change of the

temperature profile. The Eckert number allows judging if the effects of self-heating

due to dissipation can be neglected (Ec� 1) or not” [34].

Definition 2.35. Sherwood Number(Sh)

“The Sherwood is defined as the ratio of convective to diffusive mass transfer. It

is a dimensionless number and the mass transfer equivalent of Nu” [37].

Definition 2.36. Lewis Number(Le)

“The Lewis number puts in correlation the mass diffusion and the thermal con-

ductivity of a fluid. Similar to the Prandtl number, which correlates momentum

transport and thermal transport properties of a fluid, and similar to the Schmidt

number, which correlates momentum transport and mass transport of a fluid, the

Lewis number correlates mass transport to thermal transport properties of the

fluid. It is defined as

Le =
D

α
=

mass transport

heat transport
(2.15)

Similar to the Prandtl and the Schmidt numbers, the Lewis number is a material

constant” [34].

2.7 Solution Methodology

Consider the second order two point boundary value problem (BVP):

u′′ = f(x, u, u′), (2.16)
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subjected to the boundary conditions:

u(0) = 0, u(α) = ξ,

where ξ is some known constant. In order to apply the shooting method for

(BVP)(2.16), we first convert the equation (2.16) into a system of two first order

ODEs. Using the notation, u = u1, u = u′1 = u2, u′′ = u′′1 = u′2, we have

u′1 = u2, (2.17)

u′2 = f(x, u1, u2). (2.18)

The associated boundary conditions reduced as:

u1(0) = 0, u1(α) = ξ,

by considering u2(0) = η, the first order system of Eqs. (2.17) and (2.18) together

with u1(0) = 0, u2(0) = η is an initial value problem (IVP) and can be solved by

using the Runge-Kutta method of order fourth(RK4). Then we get both u1 and u2

computed at the decided nodes. If u1(α) is sufficiently close to ξ, then this u1 is an

approximate solution, If not we have to choose another value of ξ and the process

is repeated again. Newton method is used to refine the initial guess. This process

is continued until a satisfactory accuracy is achieved. Its main advantage is its

efficiency and fastness. If the solution is extremely sensitive to the assumed initial

condition, then parallel shooting method is applied (see Na [38] for details).



Chapter 3

Transfer of Heat and MHD

Viscous Nanofluid Flow over a

Non-linear Deformed Surface

This chapter comprises the transfer of heat and viscous boundary layer flow of

nanofluids in the existence of magnetic field over a non-linear stretching surface.

For the conversion of the governing PDES into non-linear ODEs, the similarity

transformation package is being used. Simplified equations are solved by applying

Shooting technique with RK4. It examines the effect of boundary conditions on the

nondimensional temperature, velocity, concentration of nanoparticle, Nusselt and

Sherwood number. It has noticed that the velocity profile is reduced by increasing

the values of velocity slip parameter λ. Results of converted ODEs are given in

the form of table and graphs. The present study is the review of Ramya et al. [8].

3.1 Problem Formulation

Consider 2D incompressible and a steady viscous flow of an electrically conducting

fluid over a non-linear deformed surface in Figure 3.1. The surface is expanded

with a fixed origin velocity of uw = axn considering Tw and Cw as constant.

19
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The nanoparticle fraction and ambient temperature have constant values C∞ and

T∞ respectively. The flow is determined by consedring 2D governing equations

consisting continuity, momentum and energy transfer.

Figure 3.1: Geometry of the physical model

3.1.1 The Governing Equations

The set of governing partial differential equations are given below [8]

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2

ρ
u, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

ν

Cp

(
∂u

∂y

)2

+ τ

[
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
]
, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

(
∂2T

∂y2

)
. (3.4)

In equations (3.1) to (3.4) T denotes the fluid temperature, C is the nanopar-

ticle concentration, where ν represent the kinematic viscosity, ρf represent the
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fluid density, specific heat capacity at constant pressure is represented by Cp, the

thermophoresis diffusion coefficient is represented by Dw, also DT is the Brownian

diffusion coefficient. T∞ is the fluid of temperature far away from the stretching

sheet, thermal diffusivity is α = k
ρCp

(m2/s), and ratio between effective heat ca-

pacity of the fluid is τ =
(ρc)p
(ρc)f

, B(x) = B0x
n−1/2 is the magnetic field.

The associated boundary conditions for the above system have been taken as:u = uw +Nν
(
∂u
∂y

)
, v = 0, T = Tw +D

(
∂T
∂y

)
, C = Cw, at y = 0.

u→ 0, v → 0, T = T∞, C = C∞, at y →∞.
(3.5)

Here uw = axn is stretching velocity, temperature at the sheet is Tw = T∞ + bx2n,

c, b are constant. D = D1x
−

n+ 1

2


is the thermal slip factor which changes

with x, where D1 is the starting value, and N = N1x
−

n+ 1

2


is the thermal slip

factor that varies with x, whereas D1 is the initial value, and also no slip case is

recovered when N = D = 0.

For the conversion of (3.5) to (3.8), into the dimensionless form, the following

similarity transformation has been applied:

η = y
√
a (n+ 1) /2νx

n−1
2 ,

u = axnf ′ (η) ,

v = −
√

(n+1)aν
2

xn−1/2
[
f + n−1

n+1

(
y
√

a(n+1)
2ν

x
n−1
2

)
f ′ (η)

]
,

Tw = T∞ + bx2nθ,Φ = (C − C∞) / (Cw − C∞) .

(3.6)

On using, the set of above transformations into Eq. (3.1), the continuity equation

satisfied.

∵ u = axnf ′,

∂u

∂x
= a

∂

∂x
(xnf ′) ,

∂u

∂x
= anxn−1f ′ + axnf ′′

(
∂η

∂x

)
,

∵
∂η

∂x
= y

√
a(n+ 1)

2ν

(
n− 1

2

)
x

n−3
2
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∂u

∂x
= anxn−1f ′ + ay

(
n− 1

2

)√
a(n+ 1)

2ν
x

3n−3
2 f ′′. (3.7)

Differentiating v w.r.t. y i.e.

∂v

∂y
=

∂

∂y

(
−
√

(n+ 1) aν

2
xn−1/2

[
f (η) +

n− 1

n+ 1
ηf ′ (η)

])
,

∂v

∂y
= −

√
(n+ 1) aν

2
xn−1/2

[
f ′ (η)

∂η

∂y
+
n− 1

n+ 1
ηf ′′ (η)

∂η

∂y
+
∂η

∂y
f ′ (η)

]
,

∵
∂η

∂y
=

√
a(n+ 1)

2ν
x(n−1)/2

∂v

∂y
= −anx

n−1
2 f ′ (η)− ay

√
a(n+ 1)

2ν

(
n− 1

2

)
x

3n−3
2 f ′′ (η) . (3.8)

On using Eqs. (3.7) and (3.8) into Eq. (3.1), the continuity equation satisfied. For

dimensionless form of momentum equation, differentiating u w.r.t. y:

∂u

∂y
= a

∂

∂y
(xnf ′ (η)) ,

∂u

∂y
= axnf ′′

∂η

∂y
,

∵
∂η

∂y
=

√
a(n+ 1)

2ν
x

n−1
2

∂u

∂y
= a

√
a(n+ 1)

2ν
x

3n−1
2 f ′′ (η) . (3.9)

Again differentiating:
∂2u

∂y2
=
a2(n+ 1)

2ν
x2n−1f ′′′ (η) . (3.10)

On using Eqs. (3.6), (3.7), (3.9) and (3.10), into Eq. (3.2).

(axnf ′ (η))

(
anxn−1f ′ + ay

(
n− 1

2
f ′′
)√

a(n+ 1)

2ν
x

3n−3
2

)

+

(
−
√

(n+ 1) aν

2
xn−1/2

[
f (η) +

n− 1

n+ 1
ηf ′ (η)

])(
a

√
a(n+ 1)

2ν
x

3n−1
2 f ′′ (η)

)

= ν

(
a2(n+ 1)

2ν
x2n−1f ′′′ (η)

)
− σB2

ρ
(axnf ′ (η)) ,

by simplifying above equation and using B = B0x
n−1/2
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a2(n+ 1)x2n−1

2
f ′′′ +

1

2
a2(n+ 1)x2n−1ff ′′ − 1

2
a2y(n− 1)x5n−3

√
a(n+ 1)

2ν
f ′f ′′

+
a2y(n− 1)x5n−3

2

√
a(n+ 1)

2ν
f ′f ′′ − a2nx2n−1f ′2 −

σB2
0

(
xn−1/2

)2
axn

ρ
= 0,

the third and fourth terms on the L.H.S. of above equation will be cancelled to

each other and rest equation will be multiplied by
2

(n+ 1)a2x2n−1
then its finally

becomes:

f ′′′ + ff ′′ −
(

2n

n+ 1

)
f ′2 −Mf ′ = 0, (3.11)

where M =
2σB2

0

aρ(n+ 1)
and B = B0x

n−1/2.

To make dimensionless form of energy equation:

Differentiating T w.r.t. x from (3.6)

∂T

∂x
=

∂

∂x

(
T∞ + bx2nθ (η)

)
,

∂T

∂x
= 0 + b

(
θ2nx2n−1 + x2nθ′ (η)

∂η

∂x

)
,

∵
∂η

∂x
= y

√
a(n+ 1)

2ν

(
n− 1

2

)
x

n−3
2

∂T

∂x
= 2bnθx2n−1 + b

(
n− 1

2

)√
a(n+ 1)

2ν
x

5n−3
2 θ′. (3.12)

Differentiating T :

∂T

∂y
=

∂

∂y

(
T∞ + bx2nθ (η)

)
,

∂T

∂y
= 0 + bx2nθ′ (η)

∂η

∂y
,

∵
∂η

∂y
=
√
a (n+ 1) /2νx(n−1)/2

∂T

∂y
= b

√
a(n+ 1)

2ν
x

5n−1
2 θ′. (3.13)

Differentiating again:
∂2T

∂y2
= ab

(n+ 1)

2ν
x3n−1θ′′ (3.14)
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Differentiating C from Eq. (3.6), w.r.t. y:

∂C

∂y
=

∂

∂y
((Cw − C∞) Φ + C∞) ,

∂C

∂y
= (Cw − C∞)

√
a(n+ 1)

2ν
x

n−1
2 Φ′ (η) . (3.15)

On using Eqs. (3.6), (3.9), (3.12), (3.13) and (3.14), into Eq. (3.3):

(axnf ′ (η))

(
2bnθx2n−1 + b

(
n− 1

2

)√
a(n+ 1)

2ν
x

5n−3
2 θ′

)

+

(
−
√

(n+ 1) aν

2
xn−1/2

[
f (η) +

n− 1

n+ 1
ηf ′ (η)

])(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′

)

= α

(
ab

(n+ 1)

2ν
x3n−1θ′′

)
+

ν

Cp

(
a

√
a(n+ 1)

2ν
x

3n−1
2 f ′′ (η)

)2

+ τ

(
DB

(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′

))(
(Cw − C∞)

√
a(n+ 1)

2ν
x

n−1
2 Φ′ (η)

)

+ τ
DT

T∞

(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′

)2

,

by simplifying:

2abnx3n−1θf ′ + aby
n− 1

2

√
a(n+ 1)

2ν
x

7n−3
2 f ′θ′ −

√
aν(n+ 1)xn−1

2
fbx5n−1/2√

a(n+ 1)

2ν
θ′ −

√
aν(n+ 1)

2
xn−1/2

(
n− 1

n+ 1

)
y

√
a(n+ 1)

2ν
xn−1/2bf ′x5n−1/2√

a(n+ 1)

2ν
θ′ = αab

n+ 1

2ν
x3n−1θ′′

+ a3
ν

Cp

n+ 1

2ν
x3n−1f ′′2 + τDBab (Cw − C∞)

n+ 1

2ν
x3n−1Φ′θ′

+ τab2
Dt

T∞

n+ 1

2ν
x5n−1θ′2,

again simplifying

2abnx3n−1θf ′ + aby
n− 1

2

√
a(n+ 1)

2ν
x

7n−3
2 f ′θ′ − abn+ 1

2
x3n−1fθ′

− abyn+ 1

2

√
a(n+ 1)

2ν
x

7n−3
2 f ′θ′ = αab

n+ 1

2ν
x3n−1θ′′ + a3

ν

Cp

n+ 1

2ν
x3n−1f ′′2

+ τDBab (Cw − C∞)
n+ 1

2ν
x3n−1Φ′θ′ + τab2

DT

T∞

n+ 1

2ν
x5n−1θ′2,
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second and fourth term on the L.H.S. of above equation will be cancelled to each

other, and multiplying by
2

ab(n+ 1)x3n−1
the above equation:

4n

n+ 1
θf ′ − fθ′ = α

ν
θ′′ +

a2ν

bCpν
f ′′2 + τDB

(Cw − C∞)

ν
Φ′θ′ + τb

DT

T∞

x2n

ν
θ′2,

using bx2n = Tw − T∞ and Pr =
ν

α
, above equation gets the following form:

1

Pr
θ′′ + fθ′ − 4n

n+ 1
θf ′ +

a2

bCp
f ′′2 +

τDB(Cw − C∞)

ν
Φ′θ′ +

τDT (Tw − T∞)

T∞ν
θ′2 = 0,

finally its becomes:

1

Pr
θ′′ + fθ′ − 4n

n+ 1
θf ′ +NbΦ

′θ′ +Ntθ
′2 + Ecf

′′2 = 0, (3.16)

whereNt =
(ρc)fDT (Tw − T∞)

(ρc)fT∞α
, Nb =

(ρc)pDB(Cw − C∞)

(ρc)fν
, and Ec =

u2w
Cp(Tw − T∞)

.

The dimensionless form of nanoparticles concentration equation Eq.(3.4):

Differentiating C from Eq. (3.6):

∂C

∂x
=

∂

∂x
((Cw − C∞) Φ + C∞) ,

∂C

∂x
= (Cw − C∞)

√
a(n+ 1)

2ν
y

(
n− 1

2

)
x

n−3
2 Φ′ (η) . (3.17)

Differentiating Eq. (3.15) w.r.t. y again:

∂2C

∂y2
= (Cw − C∞)

a(n+ 1)

2ν
xn−1Φ′′ (3.18)

On using Eqs. (3.6), (3.14), (3.15), (3.17), and (3.18) into Eq. (3.4).

(axnf ′ (η))

(
(Cw − C∞)

√
a(n+ 1)

2ν
y

(
n− 1

2

)
x

n−3
2 Φ′ (η)

)

+

(
−
√

(n+ 1) aν

2
xn−1/2

[
f (η) +

n− 1

n+ 1

(
y

√
a(n+ 1)

2ν
x(n−1)/2

)
f ′ (η)

])
(

(Cw − C∞)

√
a(n+ 1)

2ν
x

n−1
2 Φ′ (η)

)

= DB

(
(Cw − C∞)

a(n+ 1)

2ν
xn−1Φ′′

)
+
DT

T∞

(
ab

(n+ 1)

2ν
x3n−1θ′′

)
,
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after simplification it becomes:

(axnf ′ (η))

(
(Cw − C∞)

√
a(n+ 1)

2ν
y

(
n− 1

2

)
x

n−3
2 Φ′ (η)

)

−
√

(n+ 1) aν

2
xn−1/2

(
(Cw − C∞)

√
a(n+ 1)

2ν
x

n−1
2 f(η)Φ′

)
−√

(n+ 1) aν

2
xn−1/2

n− 1

n+ 1

(
y

√
a(n+ 1)

2ν
x(n−1)/2

)
f ′ (η) ·(

(Cw − C∞)

√
a(n+ 1)

2ν
x

n−1
2 Φ′ (η)

)

= DB

(
(Cw − C∞)

a(n+ 1)

2ν
xn−1Φ′′

)
+
DT

T∞

(
ab

(n+ 1)

2ν
x3n−1θ′′

)
,

taking similar terms common from first and third terms on the L.H.S. of above

Eq.

ax3n−3/2y
Cw − C∞

2

√
a(n+ 1)

2ν
[(n− 1)− (n− 1)] f ′Φ′

= DB

(
(Cw − C∞)

a(n+ 1)

2ν
xn−1Φ′′

)
+
DT

T∞

(
ab

(n+ 1)

2ν
x3n−1θ′′

)
+

√
(n+ 1) aν

2
xn−1/2

n− 1

n+ 1

(
y

√
a(n+ 1)

2ν
x(n−1)/2

)
f ′ (η)(

(Cw − C∞)

√
a(n+ 1)

2ν
x

n−1
2 Φ′ (η)

)
,

rearranging the above equation after multiplying by
2ν

DB(Cw − C∞)xn−1
the recip-

rocal of the term involving Φ′′

Φ′′ +
DT

T∞

(
bx2n

DB(Cw − C∞)

)
θ′′ +

ν

DB

fΦ′ = 0,

∵ bx2n = Tw − T∞, Le =
ν

DB

, Nt =
τDT (Tw − T∞)

νT∞
, Nb =

τDB(Cw − C∞)

ν
,

therefore above equation finally becomes:

Φ′′ +
Nt

Nb

θ′′ + LefΦ′ = 0. (3.19)

The mathematical procedure for the conversion of the dimensional boundary
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conditions Eq. (3.5), into the dimensionless form, is explained as:

∵ u = uw +Nν

(
∂u

∂y

)
, at y = 0

⇒ xnf ′ (η) = axn +Nν

(
a

√
a(n+ 1)

2ν
x

3n−1
2 f ′′ (η)

)
, at η = 0.

∵ N = N1x
−(n−1/2), and λ = N1

√
aν(n+ 1)

2

∴ axnf ′(0) = axn + λaxnf ′′(0)

⇒ f ′ = 1 + λf ′′, η = 0.

∵ v = 0 at y = 0,

⇒ f = 0 at η = 0, by using Eq. (3.5)

T = Tw +D

(
∂T

∂y

)
at y = 0

∵ T = T∞ + bx2nθ(η), Tw = T∞ + bx2n, D = D1x
−(n−1/2)

⇒ T∞ + bx2nθ(η) = T∞ + bx2n +D1x
−(n−1/2)

(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′(η)

)

∵ δ = D1

√
a(n+ 1)

2ν

∴ bx2nθ(η) = bx2n + δbx2nθ′(η)

⇒ θ(0) = 1 + δθ′(0), at η = 0

As

u→ 0, v → 0, T = T∞, C = C∞, at y →∞, then from. (3.5)

f ′ → 0, θ → 0,Φ→ 0, at η →∞

The final governing ODEs are as follows:

f ′′′ + ff ′′ −
(

2n

n+ 1

)
f ′2 −Mf ′ = 0, (3.20)

1

Pr
θ′′ + fθ′ − 4n

n+ 1
θf ′ +NbΦ

′θ′ +Ntθ
′2 + Ecf

′′2 = 0, (3.21)

Φ′′ +
Nt

Nb

θ′′ + LefΦ′ = 0. (3.22)

The associated boundary conditions (3.5) get the following form:
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 f ′(0) = 1 + λf ′′(0), f = 0, θ(0) = 1 + δθ′(0),Φ = 0, at η = 0,

f ′ → 0, θ → 0,Φ→ 0, at η →∞,
(3.23)

following parameters were used in the above equation:

Le =
ν

DB

, Pr =
ν

α
,Nb =

τDB(Cw − C∞)

ν
,

Nt =
τDT (Tw − T∞)

νT∞
,M =

2σB2
0

aρ(n+ 1)
,

δ = D1

√
a(n+ 1)

2ν
, λ = N1

√
aν(n+ 1)

2
,

Ec =
u2w

Cp(Tw − T∞)
.

3.1.2 Physical Quantities of Interest

For the dimensionless form of Skin friction coefficient Cfx following steps are re-

quired:

Cfx =
µ

ρu2w

[
∂u

∂y

]
y=0

, (3.24)

⇒ Cfx =
ν

u2w

(
a

√
a(n+ 1)

2ν
x

3n−1
2 f ′′ (η)

)
∵ ν =

µ

ρ
, using (3.9)

Cfx = a

√
ν

a2x2n

√
a(n+ 1)

2
x

3n−1
2 f ′′ (η) ,

Cfx =

√
ν

axnx

√
n+ 1

2
f ′′,

∵ Rex = uwx/ν is local Reynolds number,

∴ RexCfx =

√
n+ 1

2
f ′′ (3.25)

The dimensionlessn form of Nusselt number Nux is given as:

Nux =
xqw

k(Tw − T∞)
, (3.26)

∵ qw = −k
[
∂T

∂y

]
y=0

is heat flux at the surface
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∴ Nux =
−xk

k(Tw − T∞)

(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′

)

Nux = − x

bx2n

(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′

)
, ∵ Tw − T∞ = bx2n

Nux = −
√
axnx

ν

√
n+ 1

2
θ′, ∵ Rex = uwx/ν

(Rex)
−1/2Nux = −

√
n+ 1

2
θ′. (3.27)

Following calculations are required for the dimensionless form of Sherwood Number

Shx:

Shx =
xqm

DB(Cw − C∞)
, (3.28)

∵ qm = −Db

[
∂C

∂y

]
y=0

is mass flux at the surface

∴ Shx =
−xDB

DB(Cw − C∞)

(
(Cw − C∞)

√
a(n+ 1)

2ν
x

n−1
2 Φ′ (η)

)
,

Shx = −
√
a

ν

√
n+ 1

2
x

n
2
+ 1

2 Φ′,

Shx = −Re
1
2
x

√
n+ 1

2
Φ′, ∵ Rex = uwx/ν

Re
− 1

2
x Shx = −

√
n+ 1

2
Φ′. (3.29)

3.2 Numerical Technique

In this thesis Shooting method has been used to solve the transformed system

of ODEs (3.20) to (3.22) by assuming the missing initial conditions subject to

the boundary condition (3.23). The system of BVP (3.17)-(3.19) is converted into

IVP for applying shooting method. By solving Eq. (3.20) independently the results

obtained as f, f ′, f ′′ and f ′′′, then these results will be used in couple Eqs. (3.21)

and (3.22). For this purpose the following notations has been used.

f = f1, f
′ = f ′1 = f2,
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f ′′ = f ′′1 = f ′2 = f3,

f ′′′ = f ′′′1 = f ′′2 = f ′3.

The resulting IVP takes the following form:

f ′1 = f2, f1(0) = 0, (3.30)

f ′2 = f3, f2(0) = 1 + λξ, (3.31)

f ′3 = −f1f3 +
2n

n+ 1
f 2
2 + (M + P )f2, f3(0) = ξ, (3.32)

where ξ is the missing initial condition. The IVP has been solved by using RK4

method. Since the unbounded domain can not be used for the numerical com-

putations, so the domain of the IVP has been taken as [0, η∞] instead of [0,∞),

where η∞ is an appropriate positive real number with choosen initial guess ξ such

that:

f2 (η∞, ξ) = 0.

To solve the previous equation, Newton’s method has been used with following

iterative procedure

ξn+1 = ξn − f2(η∞, ξ
n)(

∂f2(η∞,ξn)
∂ξ

) .
In order to obtain the derivatives w.r.t. ξ, following notations will be used

∂f1
∂ξ

= f4,
∂f2
∂ξ

= f5,
∂f3
∂ξ

= f6.

Hence the Newton’s iterative scheme gets the following form

ξn+1 = ξn − f2(η∞, ξ
n)

f5(η∞, ξn)
.

By differentiating Eqs. (3.30), (3.31) and (3.32) w.r.t. ξ three more equations will

be appeared. Consequently, IVP takes the following form:

f ′1 = f2, f1(0) = 0,
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f ′2 = f3, f2(0) = 1 + λξ,

f ′3 = −f1f3 +
2n

n+ 1
f 2
2 + (M)f2, f3(0) = ξ,

f ′4 = f5, f4(0) = 0,

f ′5 = f6, f5(0) = λ,

f ′6 = −(f1f6 + f3f4) +
4n

n+ 1
f2f5 + (M)f5, f6(0) = 1,

The Newton’s iterative process is repeated untill the following condition is met.

|f2(η∞, ξ)| < ε,

here ε is taken as 10−6. Similarly by solving Eqs. (3.25) and (3.26) along with the

boundary conditions (3.27), where the missing initial conditions θ′(0) and Φ′(0)

are denoted by ψ and χ respectively. The notations used for this purpose are given

as follows:

θ = Y1,

θ′ = Y ′1 = Y2,

θ′′ = Y ′′1 = Y ′2 ,

∂Y1
∂ψ

= Y5,
∂Y2
∂ψ

= Y6,
∂Y1
∂χ

= Y9,
∂Y2
∂χ

= Y10,

Φ = Y3,

Φ′ = Y ′3 = Y4,

Φ′′ = Y ′′3 = Y ′4 ,

∂Y3
∂ψ

= Y7,
∂Y4
∂ψ

= Y8,
∂Y3
∂χ

= Y11,
∂Y4
∂χ

= Y12.

By using these notations, we get the following first order ODEs

Y ′1 = Y2, Y1(0) = 1 + δψ,

Y ′2 = Pr[
−f1Y2 +

4n

n+ 1
f2Y1 −NbY2Y4 −NtY

2
2 − Ecf 2

3

]
, Y2(0) = ψ,

Y ′3 = Y4, Y3(0) = 1,
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Y ′4 = −Lef1Y4 −
(
Nt

Nb

)
Pr[

−f1Y2 +
4n

n+ 1
f2Y1 −NbY2Y4 −NtY

2
2 − Ecf 2

3

]
, Y4(0) = χ,

Y ′5 = Y6, Y5(0) = δ,

Y ′6 = Pr[
−f1Y6 +

4n

n+ 1
f2Y5 −Nb(Y6Y4 + Y2Y8)− 2NtY2Y6

]
, Y6(0) = 1,

Y ′7 = Y8, Y7(0) = 0,

Y ′8 = −Lef1Y8 −
(
Nt

Nb

)
Pr[

−f1Y6 +
4n

n+ 1
f2Y5 −Nb(Y4Y6 + Y2Y8)− 2NtY2Y6

]
, Y8(0) = 0,

Y ′9 = Y10, Y9(0) = 0,

Y ′10 = Pr[
−f1Y10 +

4n

n+ 1
f2Y9 −Nb(Y4Y10 + Y2Y12)− 2NtY2Y10

]
, Y10(0) = 0,

Y ′11 = Y12, Y11(0) = 0,

Y ′12 = −Lef1Y12 −
(
Nt

Nb

)
Pr[

−f1Y10 +
4n

n+ 1
f2Y9 −Nb(Y10Y4 + Y2Y12)− 2NtY2Y10

]
, Y12(0) = 1.

The domain of the above problem has been taken as [0, η∞] instead of [0,∞)],

(where η∞ is a finite positive number for which the variations in the solution are

negligible after η = η∞) because the numerical calculations can not be performed

on an unbounded domain. The ideal missing conditions ψ and χ are assumed to

satisfy the following relations.

Y1(η∞, ψ, χ) = 0, (3.33)

Y3(η∞, ψ, χ) = 0. (3.34)

The above system of equations will be solved by the Newton’s method governed

by the following formulation.
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ψ(n+1)

χ(n+1)

 =

ψn
χn

−
Y5 Y9

Y7 Y11

−1 Y n
1

Y n
3


(η∞,ψ,χ)

The Newton’s iterative process is repeated up till the following condition is met.

max{|f2(η∞)|, |Y1(η∞)|, |Y3(η∞)|} ≤ ε,

where ε is a small positive number. For the computational purpose, ε has been

given the value ε = 10−8 whereas η∞ is set as 5.

3.3 Graphical Results with Explanation

A computational attempt was performed for multiple values of the velocity slip pa-

rameter λ, thermal slip parameter δ, magnetic parameter(M), non-linear stretch-

ing parameter n, Prandtl number Pr, Eckert number Ec and Brownian motion

parameter Nb has been performed. The parametric study results are portrayed

in Figures 3.2 - 3.11. For the clarification of the correctness of the numerical

model implemented, the comparability of current outputs relating to the values of

[−θ′(0)] , mass flow rate for M = 0, λ = 0, δ = 0 shall be rendered with the ac-

cessible Ramya et al. [8]. The measurement for coefficient of skin friction, rate of

heat transfer and rate of mass transfer is shown in Table 3.1. Numerical solutions

will be obtained in this thesis, using the Shooting process.

Figure 3.2 shows the impact on dimensionalless velocity for different values of n

and M . It has been noticed that there is an indirect relation of velocity f ′ with

n and M . The magnetic field, that controverses the position of the magnetic field

introduced, creates a retarding body force as per the Lorentz force. Enhanced val-

ues of M rises the retarding body force and consequently velocity decreases. As a

result of increase magnetic field there is a reduction in boundary layer thickness.

Figure 3.3 demonstrates the direct relationship of M and n on dimensionless tem-

perature. Figure 3.4 depicts the relationship between concentration profile and M .

It has been observed that there is a direct impact of M on concentration profile.
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Table 3.1: Table for −f ′′(0), (−θ′(0)) and (−Φ′(0)) for different values of M ,
λ and δ

when Pr = 5, Nb = Nt = 0.3, Le = 2, Ec = 0.1

Ramya et al. [8] Present study

M λ δ −f ′′(0) −θ′(0) −Φ′(0) −f ′′(0) −θ′(0) −Φ′(0)

0.1 0.2 0.2 0.8787 1.9429 0.7594 0.86855 1.9424 0.7593

0.3 0.9548 1.8862 0.7416 0.9595 1.8861 0.7409

0.5 1.0252 1.8302 0.7211 1.10434 1.8579 0.7225

1.0 0.3 0.1 1.0705 1.9407 0.9199 1.06268 1.9412 0.9185

0.4 0.9768 1.9255 0.9465 0.95665 1.9252 0.9430

0.5 0.8974 1.9041 0.9632 0.87120 1.9044 0.9675

0.1 0.3 1.3195 1.5029 0.4478 1.38040 1.5921 0.44090

0.4 1.3195 1.3521 0.3017 1.38040 1.4574 0.32088

0.5 1.3195 1.2199 0.2081 1.38040 1.3409 0.2082

Heat is evolved due to resistive Lorentz force that enters the fluid flow. Thus for

a stiffened magnetic field thermal and nanoparticle concentration boundary layer

thickness is thicker. Figure 3.5 displays the impact of λ on velocity profile. It

has been observed that there is an indirect relation between f ′ and velocity slip

parameter λ. This is due to slip condition that there is a difference between the

stretched sheet velocity and velocity of the fluid. Figures 3.6 and 3.7 show the

influence of variable velocity slip parameter λ on θ(η) and Φ(η). It is analysed

that θ and Φ has a direct relationship with λ in the presence of magnetic field and

thermal jump. Figures 3.8 and 3.9 displays the impact of δ on temperature profile

θ and volume fraction of the nano particles.
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It has been noticed that there is an indirect relationship of thermal slip δ with

temperature and concentration profiles. The thermal boundary layer thickness

decreases as the value of the thermal slip parameter increases even though a little

quantity of heat is transported up to the fluid from stretched sheet.

Figure 3.10 demonstrates the influence on dimensionless temperature of the Eckert

number (Ec). It has been observed that the temperature increases with increasing

Ec values and also increases the thickness of the thermal boundary layer. It is

because at stretching sheet surface the rate of heat transfer is decreased. Figure

3.11 shows the results of parameter Brownian motion Concentration Nb.
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Figure 3.2: impact of f ′ for saveral values of M and n.
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Figure 3.3: Impact of θ(η) for saveral values of M and n.
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Figure 3.4: Effect of M on Φ (η).
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Figure 3.5: Effect of λ on f ′ (η).
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Figure 3.6: Effect of λ on θ(η).
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Figure 3.7: Influence of λ on Φ(η).
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Chapter 4

MHD Radiative Nanofluid Flow

over a Non-linear Stretching

Sheet Through a Porous Medium

This chapter extends the work of Ramya et al. [8] presented in Chapter 3. The

effect of heat radiation flux and porosity factor on the magnetohydrodynamics flow

of viscous nanofluid over a non-linear stretched surface in the presence of magnetic

field is analysed. The governing non-linear PDEs and their associated boundary

conditions are transformed into system of ODEs through adequate transformation.

The obtained system of ODEs are solved by using Shooting method with RK4. In

the last section of this chapter, the results obtained from transformed ODEs are

explained with the help of graphs and table.

4.1 Mathematical Modeling

Consider a 2D incompressible and steady viscous flow of an electrically charged

fluid through a non-linear stretched sheet through a porous medium in the pres-

ence of thermal radiation in Figure 3.1. The flow occupied the space y ≥ 0.

Furthermore , the direction of flow is along x-axis and y axis is perpendicular to

41
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it. A surface is expanded with a velocity of uw = axn and Tw( wall temperature),

Cw(nanoparticle fraction), C∞ (nanoparticle fraction) and T∞ (ambient tempera-

ture) are considered constant.

The governing PDEs are as follows:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2

ρ
u− ν

K
u, (4.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

ν

Cp

(
∂u

∂y

)2

+

τ

[
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
]
− 1

ρCp

∂qr
∂y

, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

(
∂2T

∂y2

)
. (4.4)

In the above equations (4.1) to (4.4), T represents fluid temperature, nanoparticle

concentration is represented by C, ν denotes kinematic viscosity, permeability

is represented by K, thermal radiation is represented by qr, ρ is fluid density,

where at uniform pressure specific heat capacity is represented by Cp, DB is the

thermophoresis diffusion coefficient, Brownian diffusion coefficient is represented

by DT T∞ is the fluid of temperature at infinity from the stretched surface.

The symbol α =
k

(ρc)f
(m2/s) is the thermal diffusivity, τ =

(ρc)p
(ρc)f

is the ratio

between effective heat capacity of the fluid and B(x) = B0x
n−1/2 is a variable

magnetic field. The dimensional form of the boundary conditions is as follows:u = uw +Nν
(
∂u
∂y

)
, v = 0, T = Tw +D

(
∂T
∂y

)
, C = Cw, at y = 0.

u→ 0, v → 0, T = T∞, C = C∞, at y →∞.
(4.5)

The radiative heat flux is given by:

qr = −4σ?

3k?
∂T 4

∂y
, (4.6)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the coefficient of mean ab-

sorption.

For small difference in temperature, T 4 can be obtained by using Taylor series as:
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T 4 = 4TT 3
∞ − 3T 4

∞. (4.7)

On using (4.7) into (4.6)

qr = −16σ?T 3
∞

3k?
∂T

∂y
, (4.8)

and differentiating w.r.t. y,

∂qr
∂y

= −16σ?T 3
∞

3k?
∂2T

∂y2
. (4.9)

Now, (4.3) got the following form:

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

ν

Cp

(
∂u

∂y

)2

+ τ

[
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
]
− 1

ρCp

16σ?T 3
∞

3k?
∂2T

∂y2
. (4.10)

For the conversion of (4.1) to (4.4) into the dimensionless form, the following

similarity transformation has been applied [8].



η = y
√
a (n+ 1) /2νx(n−1)/2,

u = axnf ′ (η) ,

v = −
√

(n+1)aνf
2

xn−1/2
[
f (η) + n−1

n+1

(
y
√

a(n+1)
2ν

x(n−1)/2
)
f ′ (η)

]
,

T = T∞ + bx2nθ (η) ,Φ (η) = (C − C∞) / (Cw − C∞) .

(4.11)

The detailed procedure for the conversion of continuity Eq. (4.1) and concentra-

tion Eq. (4.4) has been discussed in Chapter 3.

Here, calculations for the dimensionless form of momentum Eq. (4.2) are given as

follows:

∵ u = axnf ′ (η) ,

∂u

∂x
= a

∂

∂x
(xnf ′ (η)) ,

∂u

∂x
= anxn−1f ′ (η) + axnf ′′ (η)

(
∂η

∂x

)
,∵

∂η

∂x
= y

√
a(n+ 1)

2ν

(
n− 1

2

)
x

n−3
2

∂u

∂x
= anxn−1f ′ + ay

(
n− 1

2

)√
a(n+ 1)

2ν
x

3n−3
2 f ′′. (4.12)
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Differentiating u w.r.t. y:

∂u

∂y
= a

∂

∂y
(xnf ′ (η)) ,

∂u

∂y
= axnf ′′ (η)

∂η

∂y
,

∵
∂η

∂y
=

√
a(n+ 1)

2ν
x

n−1
2

∂u

∂y
= a

√
a(n+ 1)

2ν
x

3n−1
2 f ′′ (η) . (4.13)

∂2u

∂y2
=
a2(n+ 1)

2ν
x2n−1f ′′′ (η) . (4.14)

On using Eqs. (4.11), (4.12), (4.13), and (4.14), into Eq. (4.2), we have

(axnf ′ (η))

(
anxn−1f ′ + ay

(
n− 1

2
f ′′
)√

a(n+ 1)

2ν
x

3n−3
2

)

+

(
−
√

(n+ 1) aν

2
xn−1/2

[
f (η) +

n− 1

n+ 1
ηf ′ (η)

])(
a

√
a(n+ 1)

2ν
x

3n−1
2 f ′′ (η)

)

= ν

(
a2(n+ 1)

2ν
x2n−1f ′′′ (η)

)
− σB2

ρf
(axnf ′ (η))− ν

K
(axnf ′) .

By simplifying and using B = B0x
n−1/2

a2(n+ 1)x2n−1

2
f ′′′ +

a2(n+ 1)x2n−1

2
ff ′′ − a2y(n− 1)x5n−3

2

√
a(n+ 1)/2νf ′f ′′

+
a2y(n− 1)x5n−3

2

√
a(n+ 1)/2νf ′f ′′ − a2nx2n−1f ′2 −

σB2
0

(
xn−1/2

)2
axn

ρf
f ′

− ν

K
(axnf ′) = 0.

The 3rd and 4th terms on the L.H.S. of above equation will be cancelled to each

other and rest equation will be multiplied by
2

(n+ 1)a2x2n−1
, then the above

equation finally becomes:

f ′′′ + ff ′′ −
(

2n

n+ 1

)
f ′2 −Mf ′ − Pf ′ = 0, (4.15)

where M =
2σB2

0

aρf (n+ 1)
, B = B0x

n−1/2 and P =
2ν

K(n+ 1)axn−1
. The procedure

for the conversion of energy equation (4.11) is given as:
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Differentiating T w.r.t. x:

∂T

∂x
=

∂

∂x

(
T∞ + bx2nθ (η)

)
,

∂T

∂x
= 0 + b

(
θ2nx2n−1 + x2nθ′ (η)

∂η

∂x

)
,

∵
∂η

∂x
= y

√
a(n+ 1)

2ν

(
n− 1

2

)
x

n−3
2

∂T

∂x
= 2bnθx2n−1 + b

(
n− 1

2

)√
a(n+ 1)

2ν
x

5n−3
2 θ′. (4.16)

Differentiating T w.r.t y:

∂T

∂y
=

∂

∂y

(
T∞ + bx2nθ (η)

)
,

∂T

∂y
= 0 + bx2nθ′ (η)

∂η

∂y
,

∵
∂η

∂y
=
√
a (n+ 1) /2νx(n−1)/2

∂T

∂y
= b

√
a(n+ 1)

2ν
x

5n−1
2 θ′. (4.17)

Again differentiating above equation:

∂2T

∂y2
= ab

(n+ 1)

2ν
x3n−1θ′′. (4.18)

Differentiating C from Eq. (4.15), w.r.t. y:

C = (Cw − C∞) Φ (η) + C∞,

∂C

∂y
b =

∂

∂y
((Cw − C∞) Φ (η) + C∞) ,

∂C

∂y
= (Cw − C∞)

√
a(n+ 1)

2ν
x

n−1
2 Φ′ (η) . (4.19)

On using Eqs. (4.11), (4.16), (4.17), (4.18), and (4.19), into Eq. (4.10):
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(axnf ′ (η))

(
2bnθx2n−1 + b

(
n− 1

2

)√
a(n+ 1)

2ν
x

5n−3
2 θ′

)

+

(
−
√

(n+ 1) aν

2
xn−1/2

[
f (η) +

n− 1

n+ 1
ηf ′ (η)

])(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′

)

= α

(
ab

(n+ 1)

2ν
x3n−1θ′′

)
+

ν

Cp

(
a

√
a(n+ 1)

2ν
x

3n−1
2 f ′′ (η)

)2

+ τ

(
DB

(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′

))(
(Cw − C∞)

√
a(n+ 1)

2ν
x

n−1
2 Φ′ (η)

)

+ τ
DT

T∞

(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′

)2

− 1

ρCp

16σ?T 3
∞

3k?
ab

(n+ 1)

2ν
x3n−1θ′′,

and simplifying above equation

2abnx3n−1θf ′ + aby
n− 1

2

√
a(n+ 1)

2ν
x

7n−3
2 f ′θ′

−
√
aν(n+ 1)

2
xn−1/2fbx5n−1/2

√
a(n+ 1)

2ν
θ′

−
√
aν(n+ 1)

2
xn−1/2

(
n− 1

n+ 1

)
y

√
a(n+ 1)

2ν
xn−1/2bf ′x5n−1/2

√
a(n+ 1)

2ν
θ′

= αab
n+ 1

2ν
x3n−1θ′′ + a3

ν

Cp

n+ 1

2ν
x3n−1f ′′2 + τDBab (Cw − C∞)

n+ 1

2ν
x3n−1Φ′θ′

+ τab2
DT

T∞

n+ 1

2ν
x5n−1θ′2 − 1

ρCp

16σ?T 3
∞

3k?
ab

(n+ 1)

2ν
x3n−1θ′′.

Again simplifying:

2abnx3n−1θf ′ + aby
n− 1

2

√
a(n+ 1)

2ν
x

7n−3
2 f ′θ′

− abn+ 1

2
x3n−1fθ′ − abyn+ 1

2

√
a(n+ 1)

2ν
x

7n−3
2 f ′θ′

= αab
n+ 1

2ν
x3n−1θ′′ + a3

ν

Cp

n+ 1

2ν
x3n−1f ′′2

+ τDBab (Cw − C∞)
n+ 1

2ν
x3n−1Φ′θ′

+ τab2
DT

T∞

n+ 1

2ν
x5n−1θ′2 − 1

ρCp

16σ?T 3
∞

3k?
ab

(n+ 1)

2ν
x3n−1θ′′.

Second and fourth terms on the R.H.S. of previous equation will be cancelled to
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each other and rest of the equation will be multiplied by
2ν

abα(n+ 1)x3n−1
.

4n

n+ 1
θf ′−fθ′ = α

ν
θ′′+

a2ν

bCpν
f ′′2+τDB

(Cw − C∞)

ν
Φ′θ′+τb

DT

T∞

x2n

ν
θ′2− 1

ρCpα

16σ?T 3
∞

3k?
θ′′.

In above equation we will use bx2n = Tw−T∞, ρCpα = k, α =
K

ρCp
(m2/s), Pr =

ν

α
,

and Rd =
4σ?T 3

∞
3kk?

.

Hence the transformed form of energy equation is:

1

Pr
θ′′+

4Rd

3
θ′′+fθ′− 4n

n+ 1
θf ′+

a2

bCp
f ′′2+

τDB(Cw − C∞)

ν
Φ′θ′+

τDT (Tw − T∞)

T∞ν
θ′2 = 0,

and finally it becomes:

(
1

Pr
+

4Rd

3

)
θ′′ + fθ′ − 4n

n+ 1
θf ′ +NbΦ

′θ′ +Ntθ
′2 + Ecf

′′2 = 0, (4.20)

whereNb =
(ρc)pDB(Cw − C∞)

(ρc)fν
, Nt =

(ρc)fDT (Tw − T∞)

(ρc)fT∞α
and Ec =

u2w
Cp(Tw − T∞)

.

The final dimensionless form of the governing model is

f ′′′ + ff ′′ −
(

2n

n+ 1

)
f ′2 − (M + P )f ′ = 0, (4.21)(

1

Pr
+

4Rd

3

)
θ′′ + fθ′ − 4n

n+ 1
θf ′ +NbΦ

′θ′ +Ntθ
′2 + Ecf

′′2 = 0, (4.22)

Φ′′ +
Nt

Nb

θ′′ + LefΦ′ = 0. (4.23)

The associated boundary conditions are as follows:
f ′(0) = 1 + λf ′′(0), f = 0,

θ(0) = 1 + δθ′(0),Φ = 0, at η = 0.

f ′ → 0, θ → 0,Φ→ 0, at η →∞,

(4.24)

where the detailed procedure for the conversion of dimensional boundary con-

ditions (4.5) into nondimensional form (4.24) has been discussed in Chapter 3.
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Different parameters used in the previous equations are given as:



Le = ν
DB
, Pr = ν

α
, Nb = τDB(Cw−C∞)

ν
,

Nt = τDT (Tw−T∞)
νT∞

,M =
2σB2

0

aρ(n+1)
,

δ = D1

√
a(n+1)

2ν
, λ = N1

√
aν(n+1)

2
,

Ec = u2w
Cp(Tw−T∞)

.

4.1.1 Physical Quantities of Interest

Calculation for the nondimensionl form of Skin friction coefficient Cfx is given as.

Cfx =
µ

ρu2w

[
∂u

∂y

]
y=0

, (4.25)

Cfx =
ν

u2w

(
a

√
a(n+ 1)

2ν
x

3n−1
2 f ′′ (η)

)
∵ ν =

µ

ρ
, using (4.17)

Cfx = a

√
ν

a2x2n

√
a(n+ 1)

2
x

3n−1
2 f ′′ (η) ,

Cfx =

√
ν

axnx

√
n+ 1

2
f ′′,

∵ Rex = uwx/ν is local Reynolds number,

∴ RexCfx =

√
n+ 1

2
f ′′ (4.26)

To obtained the dimensionless form of Nusselt number Nux the following steps

are required.

Nux =
xqw

k(Tw − T∞)
, (4.27)

∵ qw = −
[(
k +

16σ?T 3
∞

3k?

)
∂T

∂y

]
y=0

is heat radiative flux.

Nux = − x

k(Tw − T∞)

(
k +

16σ?T 3
∞

3k?

)(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′ (0)

)
,

Nux = − x

bx2n

(
1 +

16σ?T 3
∞

3kk?

)(
b

√
a(n+ 1)

2ν
x

5n−1
2 θ′ (0)

)
, ∵ Tw − T∞ = bx2n,

Nux = −
(

1 +
4Rd

3

)√
axnx

ν

√
n+ 1

2
θ′ (0) , ∵ Rd =

4σ?T 3
∞

kk?
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(Rex)
−1/2Nux = −

(
1 +

4Rd

3

)√
n+ 1

2
θ′ (0) . ∵ Rex = uwx/ν (4.28)

For the nondimensional form of Sherwood number Shx the following calculations

are required.

Shx =
xqm

DB(Cw − C∞)
, (4.29)

∵ qm = −Db

[
∂C

∂y

]
y=0

is mass flux at the surface

Shx =
−xDB

DB(Cw − C∞)

(
(Cw − C∞)

√
a(n+ 1)

2ν
x

n−1
2 Φ′ (η)

)
,

Shx = −
√
a

ν

√
n+ 1

2
x

n
2
+ 1

2 Φ′,

Shx = −Re
1
2
x

√
n+ 1

2
Φ′, ∵ Rex = uwx/ν

Re
− 1

2
x Shx = −

√
n+ 1

2
Φ′. (4.30)

4.2 Numerical Technique

In this thesis Shooting method has been used to solve the transformed system of

ODEs (4.21) to (4.23) by assuming the missing initial conditions subject to the

boundary condition (4.24). The system of BVP (4.21)-(4.23) is first converted into

IVP for the application of shooting method. By solving Eq. (4.21) independently

we obtained results as f, f ′, f ′′ and f ′′′, then we will use these results in couple

Eqs. (4.22) and (4.23). For this purpose the following notations has been used.

f = f1, f ′ = f ′1 = f2,

f ′′ = f ′′1 = f ′2 = f3, f ′′′ = f ′′′1 = f ′′2 = f ′3.

The resulting IVP takes the following form:

f ′1 = f2, f1(0) = 0, (4.31)

f ′2 = f3, f2(0) = 1 + λξ, (4.32)

f ′3 = −f1f3 +
2n

n+ 1
f 2
2 + (M + P )f2, f3(0) = ξ, (4.33)
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where ξ is the missing initial condition. The IVP has been solved by using RK4

method. Since the unbounded domain can not be used for the numerical com-

putations, so the domain of the IVP has been taken as [0, η∞] instead of [0,∞),

where η∞ is an appropriate positive real number with choosen initial guess ξ such

that:

f2 (η∞, ξ) = 0.

To solve the previous equation, Newton’s method has been used with following

iterative procedure

ξn+1 = ξn − f2(η∞, ξ
n)(

∂f2(η∞,ξn)
∂ξ

) .
In order to obtain the derivatives w.r.t. ξ, following notations will be used

∂f1
∂ξ

= f4,
∂f2
∂ξ

= f5,
∂f3
∂ξ

= f6.

Hence the Newton’s iterative scheme gets the following form

ξn+1 = ξn − f2(η∞, ξ
n)

f5(η∞, ξn)
.

By differentiating Eqs. (4.31), (4.32) and (4.33) w.r.t. ξ three more equations will

be appeared. As a result of these six ODEs, IVP takes the following form:

f ′1 = f2, f1(0) = 0,

f ′2 = f3, f2(0) = 1 + λξ,

f ′3 = −f1f3 +
2n

n+ 1
f 2
2 + (M + P )f2, f3(0) = ξ,

f ′4 = f5, f4(0) = 0,

f ′5 = f6, f5(0) = λ,

f ′6 = −(f1f6 + f3f4) +
4n

n+ 1
f2f5 + (M + P )f5, f6(0) = 1,

The Newton’s iterative process is repeated untill the following condition is met.

|f2(η∞, ξ)| < ε,
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here ε is taken as 10−6. Similarly by solving Eqs. (4.22) and (4.23) along with the

boundary conditions (4.24), where the missing initial conditions θ′(0) and Φ′(0)

are denoted by ψ and χ respectively.

The notations used for this purpose are given as follows:

θ = Y1,

θ′ = Y ′1 = Y2,

θ′′ = Y ′′1 = Y ′2 ,

∂Y1
∂ψ

= Y5,
∂Y2
∂ψ

= Y6,
∂Y1
∂χ

= Y9,
∂Y2
∂χ

= Y10,

Φ = Y3,

Φ′ = Y ′3 = Y4,

Φ′′ = Y ′′3 = Y ′4 ,

∂Y3
∂ψ

= Y7,
∂Y4
∂ψ

= Y8,
∂Y3
∂χ

= Y11,
∂Y4
∂χ

= Y12.

By using these notations, we get the following first order ODEs:

Y ′1 = Y2, Y1(0) = 1 + δψ,

Y ′2 =

(
3Pr

3 + 4RdPr

)
[
−f1Y2 +

4n

n+ 1
f2Y1 −NbY2Y4 −NtY

2
2 − Ecf 2

3

]
, Y2(0) = ψ,

Y ′3 = Y4, Y3(0) = 1,

Y ′4 = −Lef1Y4 −
(
Nt

Nb

)
Pr[

−f1Y2 +
4n

n+ 1
f2Y1 −NbY2Y4 −NtY

2
2 − Ecf 2

3

]
, Y4(0) = χ,

Y ′5 = Y6, Y5(0) = δ,

Y ′6 =

(
3Pr

3 + 4RdPr

)
[
−f1Y6 +

4n

n+ 1
f2Y5 −Nb(Y6Y4 + Y2Y8)− 2NtY2Y6

]
, Y6(0) = 1,

Y ′7 = Y8, Y7(0) = 0,
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Y ′8 = −Lef1Y8 −
(
Nt

Nb

)
Pr[

−f1Y6 +
4n

n+ 1
f2Y5 −Nb(Y4Y6 + Y2Y8)− 2NtY2Y6

]
, Y8(0) = 0,

Y ′9 = Y10, Y9(0) = 0,

Y ′10 =

(
3Pr

3 + 4RdPr

)
[
−f1Y10 +

4n

n+ 1
f2Y9 −Nb(Y4Y10 + Y2Y12)− 2NtY2Y10

]
, Y10(0) = 0,

Y ′11 = Y12, Y11(0) = 0,

Y ′12 = −Lef1Y12 −
(
Nt

Nb

)
Pr[

−f1Y10 +
4n

n+ 1
f2Y9 −Nb(Y10Y4 + Y2Y12)− 2NtY2Y10

]
, Y12(0) = 1.

The domain of the above problem is [0, η∞] instead of [0,∞), where η∞ is a finite

positive number for which the variations in the solution are negligible after η = η∞

where ψ and χ are missing conditions and are assumed to satisfy the following re-

lations.

Y1(η∞, ψ, χ) = 0, (4.34)

Y3(η∞, ψ, χ) = 0. (4.35)

The above system of equations will be solved by the Newton’s method governed

by the following formulation.

ψ(n+1)

χ(n+1)

 =

ψn
χn

−
Y5 Y9

Y7 Y11

−1 Y n
1

Y n
3


(η∞,ψ,χ)

The Newton’s iterative process is repeated up till the following condition is met.

max{|f2(η∞)|, |Y1(η∞)|, |Y3(η∞)|} ≤ ε,

where ε is a small positive number. For the computational purpose, ε has been

given the value ε = 10−8 whereas η∞ is set as 5.
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4.3 Graphical Results

The main objective of graphical results is to explain the impact of different param-

eters for the f ′(η), θ(η) and Φ(η). Numerical results of the Skin friction coefficient

[−f ′′(0)], Nusselt number [−θ′(0)] and Sherwood number [−Φ′(0)] for the different

values of some fixed parameters (magnetic numberM , velocity slip variable λ, ther-

mal slip parameter δ, heat radiative flux R, and porosity factor P ) are shown in

Table 4.1. The values of M and skin friction coefficient are directly related while by

accelerating the values of λ, Skin friction coefficient decreased. Shooting method

was employed to obtain numerical results. The parameters such as porosity(P ),

magnetic number M , Brownian factor Nb, Prandtl Pr, Thermophoretic number

Nt, non-linear stretching parameter n, Lewis number Le, velocity slip variable λ

and Eckert number Ec observed graphically in Figures 4.1 to 4.16.

Figure 4.1 shows the impact of porosity factor(P ) on f ′. It has been observed

that f ′ is decreasing by increasing the values of a porosity factor P . The increased

porosity results in the increased resistance applied by surface to the fluid motion

which in return reduces the fluid velocity. The impact of porosity factor P on

temperature θ has been shown in Figure 4.2. The increased temperature θ is due

to increased resistance offered by porosity P . Effect of porosity P on concentra-

tion has been shown in Figure 4.3. For increased porosity P nanoparticles’s far

movement has occurred due to intense gradiant augments close to the surface.

The effect of Rd on θ has been shown in Figure 4.4. The enhanced thermal ra-

diation parameter Rd increases the temperature distribution. The exit of heat

energy from the fluid surface due to incremental values of Rd causes an increase

in temperature θ of nanofluids and hence cools the system. The increased val-

ues of Rd generate maximum energy to the system which in results elevate the

temperature of the fluid and hence enhances the intensity of heat radiation flux.

It is clearly observed that the responsibility of enhanced temperature is due to

weakened mean absorption coefficient(k∗). Enhanced temperature is also effected

by presence of magnetic field. Hence fine method of cooling can be achieved at

minimum value of Rd. Figure 4.5 illustrated the effect of M on the velocity f ′.
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If M is equal to zero, hydrodynamic movement occurs and when M is greater

than zero, the MHD flow occurs. By increasing M graph of f ′ decreases. This is

because the Lorentz force in MHD flow is occurred due to existence of magnetic

parameter M . Increased temperature and thermal boundary layer is due to direct

relationship between Lorentz force and magnetic parameter. By increasing M , the

retarding force also increases which in result decreases the velocity profile f ′. And

by increasing M , temperature and concentration profile also increases because of

a resistive force called Lorentz force that crosses the fluid motion and hence heat

is transformed. This phenomena has been presented in Figures 4.6 and 4.7.

Table 4.1: Table for −f ′′(0), −θ′(0) and −Φ′(0) for different values of M , λ
and δ when Pr = 5, Nb = Nt = 0.3, Le = 2 and Ec = 0.1.

M λ δ R P −f ′′(0) −θ′(0) −Φ′(0)

0.1 0.2 0.2 0.5 0.2 0.93309 1.80229 0.62928

0.3 0.99154 1.76143 0.62928

0.4 1.01883 1.74164 0.6156

0.5 1.04498 1.7222 0.6292

1.0 0.3 0.1 1.0316 1.73372 0.5244

0.4 0.9293 1.9228 0.9439

0.5 0.1 0.1 0.8466 1.92281 0.8914

0.1 0.3 1.3342 1.42129 0.9130

0.4 1.3342 1.26126 0.7180

0.5 1.3342 1.31618 0.5629

Figures 4.8, 4.9 and 4.10 present the inverse relationship of n with f ′, θ and Φ
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respectively. The inverse relationship between Lewis number Le and Φ with η,

has been shown in Figure 4.11. Lewis number Le and concentration profile are

inversely related.

Figure 4.12 presents the relationship of Pr with θ. It has been analysed that

incremental values of Pr causes a reduction in thermal diffusivity which in return

causes a decrease in temperature profile. Figure 4.13 shows the relationship be-

tween velocity profile f ′ and velocity slip parameter λ. It has been observed that

by increasing the values λ velocity profile decreases. In case of slip condition,

stretching sheet velocity is different from flow velocity close to the sheet. Figure

4.14 illustrated the impact of Ec on temperature profile θ. It has been noticed that

there is direct relationship between Ec and θ(η). Collection of energy in the fluid

region is due to enhanced Ec. Consequently frictional heating is produced due to

squandering, created in response to viscosity and elastic deformation. The indirect

relationship between thermal slip parameter δ and concentration parameter Φ has

been shown in Figure 4.15. It is clear from the graph that increasing the value of

thermal slip parameter a reduction in the concentration parameter was observed

even for a small value. The effect of Nb and Nt on θ has been shown in Figure

4.16. It is noticed that increased temperature profile is due to enhanced Nb and

Nt. The reason is that the thermophoretic force is generated due to temperature

gradient and it generates a rapid flow far from the stretched surface.
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Figure 4.1: impact of P on velocity profile.
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Figure 4.2: Effect of porosity P on temperature profile.
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Figure 4.3: Effect of porosity P on Φ.
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Figure 4.4: Effect of Rd on θ.
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Figure 4.5: Effect of M on f ′.
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Figure 4.6: Effect of M on θ.
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Figure 4.7: Effect of M on Φ(η).
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Figure 4.8: Effect of n on f ′.
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Figure 4.9: Effect of n on θ.
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Figure 4.10: Effect of n on Φ.
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Figure 4.11: Effect of Le on Φ(η).
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Figure 4.12: Effect of Pr on θ(η).
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Figure 4.13: Effect of λ on f ′.
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Figure 4.14: Effect of Ec on θ.
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Figure 4.16: Effect of Nb and Nt on θ(η).



Chapter 5

Conclusion

This thesis reviewed the work of Ramya et al. [8] and extended the impact of ve-

locity and heat radiation flux on MHD nanofluid flow over a non-linear stretching

sheet through a porous medium in the presence of magnetic field. At first, the

non-linear governing equations are converted into ODEs by using suitable trans-

formations. Numerical results are obtained from transformed ordinary differential

equations by using Shooting technique with RK4. Results are shown in the form

of graphs and tables for different values of governing physical parameters i.e.,

Porosity factor P , heat radiative flux Rd, Prandtl number Pr, Eckert number Ec,

Brownian motion parameter Nb, Thermophoresis parameter Nt, magnetic param-

eter M and Lewis number Le on velocity, temperature and concentration profiles.

It is concluded from the present work that:

1. Enhanced value of Brownian motion parameter Nb causes an increment in

temperature profile θ. On the other hand, Nb causes reduction in concentra-

tion profile Φ.

2. By increasing the value Eckert number Ec, temperature profile θ increases.

3. Velocity slip parameter λ and velocity profile f ′ are in inverse relationship

to each other.

4. Enhanced values of velocity slip parameter λ cause an increment in the

temperature profile.
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5. It is noticed that velocity slip parameter λ has a direct impact on concen-

tration profile Φ.

6. By increasing the value of Lewis number Le, concentration profile decreases.

7. There is direct relationship of thermophoresis parameter Nt with tempera-

ture profile θ and concentration profile Φ. It is because temperature gradi-

ent generates thermophoretic Nt so the fluid gets heatup and flows from the

stretching sheet.

8. The velocity profile f ′ decreases while increasing the porosity factor P .

9. The values of porosity factor and temperature profile are directly related.

10. There is also direct relationship between porosity P and concentration pro-

file.

11. By increasing the values of heat radiative flux Rd, temperature profile rises.

12. Concentration profile Φ decreases while increasing the Lewis number Le .

13. Enhanced Prandtl number Pr causes reduction in temperature profile.
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